reduce_processing_operator

Module that defines the ReduceProcessingOperator class

class tasrif.processing_pipeline.reduce_processing_operator.ReduceProcessingOperator(observers=None)

The ReduceProcessingOperator is a specialized ProcessingOperator, where a reduce function is applied on each element of a list of inputs. Users can inherit from this operator to quickly build their own custom operators that perform reduce-like operations.

initial(Any)

The initial element passed to the reduce function.

Examples

>>> import pandas as pd
>>> from tasrif.processing_pipeline.reduce_processing_operator import ReduceProcessingOperator
>>>
>>> df0 = pd.DataFrame([[1, "2020-05-01 00:00:00", 1], [1, "2020-05-01 01:00:00", 1],
>>>                     [1, "2020-05-01 03:00:00", 2], [2, "2020-05-02 00:00:00", 1],
>>>                     [2, "2020-05-02 01:00:00", 1]],
>>>                     columns=['logId', 'timestamp', 'sleep_level'])
>>>
>>> df1 = pd.DataFrame([['tom', 10],
>>>                     ['Alfred', 15],
>>>                     ['Alfred', 18],
>>>                     ['juli', 14]],
>>>                     columns=['name', 'age'])
>>>
>>> class AppendOperator(ReduceProcessingOperator):
>>>     initial = pd.DataFrame([["Harry", "2020-05-01 00:00:00"]],
>>>                             columns=["name", "timestamp"])
>>>
>>>     def _processing_function(self, df_to_append, dfs):
>>>         return dfs.append(df_to_append)
>>>
>>> AppendOperator().process(df0, df1)
    name            timestamp  logId  sleep_level   age
0   Harry  2020-05-01 00:00:00    NaN          NaN   NaN
0     NaN  2020-05-01 00:00:00    1.0          1.0   NaN
1     NaN  2020-05-01 01:00:00    1.0          1.0   NaN
2     NaN  2020-05-01 03:00:00    1.0          2.0   NaN
3     NaN  2020-05-02 00:00:00    2.0          1.0   NaN
4     NaN  2020-05-02 01:00:00    2.0          1.0   NaN
0     tom                  NaN    NaN          NaN  10.0
1  Alfred                  NaN    NaN          NaN  15.0
2  Alfred                  NaN    NaN          NaN  18.0
3    juli                  NaN    NaN          NaN  14.0