normalize_operator¶
Operator to normalize the integer/float values in a dataframe
-
class
tasrif.processing_pipeline.custom.normalize_operator.
NormalizeOperator
(feature_names='all', method='zscore', normalization_parameters=None)¶ Normalizes the values for the supplied feature_names using the specified algorithm. This operator works on a 2D data frames where the feature_names represent the features. The returned data frame contains normalized values in the specified feature_names
Examples
>>> import pandas as pd >>> from tasrif.processing_pipeline.custom import NormalizeOperator >>> df = pd.DataFrame([ >>> [1, "2020-05-01 00:00:00", 1], >>> [1, "2020-05-01 01:00:00", 1], >>> [1, "2020-05-01 03:00:00", 2], >>> [2, "2020-05-02 00:00:00", 1], >>> [2, "2020-05-02 01:00:00", 1]], >>> columns=['logId', 'timestamp', 'sleep_level']) >>> >>> df['timestamp'] = pd.to_datetime(df['timestamp']) >>> df = df.set_index('timestamp') >>> op = NormalizeOperator('all', 'minmax', {'min': 0, 'max': 2}) >>> op.process(df) [ sleep_level timestamp 2020-05-01 1.333333 2020-05-02 1.000000]
-
__init__
(feature_names='all', method='zscore', normalization_parameters=None)¶ Creates a new instance of NormalizeOperator
- Parameters
feature_names (list, str) – feature_names in the given dataframe to normalize
method (str) – The normalization method (‘zscore’, ‘minmax’, ‘maxabs’, ‘robust’) to be used
normalization_parameters (dict) –
- Dictionary containing parameters for a specific normalization.::
- Default normalization parameters are as follows:
- If method is
zscore
normalization_params = {'with_mean': True, 'with_std': True}
- If method is
- If method is
minmax
normalization_params = {'feature_range': (0,1)}
- If method is
- If method is
maxabs
normalization_params = {}
- If method is
- If method is
robust
normalization_params = {'with_scaling': True, 'with_centering': True, 'quantile_range':(25.0, 75.0), 'unit_variance': False}
- If method is
- Raises
ValueError – parameter method unknown.
-