compose_operator¶
Module that defines the ComposeOperator class
-
class
tasrif.processing_pipeline.compose_operator.
ComposeOperator
(processing_operators, observers=None, num_processes=1)¶ Class representing a composiition of processing operators. The same data flows to all the operators. The order is not important. The output of the process function is a composition of the results of all the containing operators
-
__init__
(processing_operators, observers=None, num_processes=1)¶ Constructs a compose operator from a list of operators
- Parameters
processing_operators – list[ProcessingOperator] Python list of processing operators
observers (list[Observer]) – Python list of observers
num_processes – int number of logical processes to use to process the operator
- Raises
ValueError – Occurs when one of the objects in the specified list is not a ProcessingOperator
Examples
>>> import numpy as np >>> import pandas as pd >>> from tasrif.processing_pipeline.pandas import DropDuplicatesOperator, DropNAOperator >>> from tasrif.processing_pipeline import ComposeOperator >>> pipeline = ComposeOperator([DropDuplicatesOperator(), DropNAOperator()]) >>> df = pd.DataFrame({"pid": ['001', '002', '003'], >>> "height": [np.nan, 188, 170], >>> "born": [pd.NaT, pd.Timestamp("1940-04-25"), >>> pd.NaT]}) >>> pipeline.process(df) [( pid height born 0 001 NaN NaT 1 002 188.0 1940-04-25 2 003 170.0 NaT,), ( pid height born 1 002 188.0 1940-04-25,)]
-
set_observers
(observers)¶ Function to store the observers for the given operator.
- Parameters
observers (list of Observer) – Observer objects that observe the operator
-
is_functional
()¶ Function that returns whether the operator is functional or infrastructure
- Returns
whether is_functional
- Return type
is_functional (bool)
-