normalize_transform_operator

Operator to normalize the integer/float values in a dataframe

class tasrif.processing_pipeline.custom.normalize_transform_operator.NormalizeTransformOperator(feature_names='all', model=None)

Normalizes the values for the supplied feature_names using the supplied model. This operator works on a 2D data frames where the feature_names represent the features. The returned data frame contains normalized values in the specified feature_names. This will be used when splitting the dataset into training and testing set and then using the model generated from the testing set on the testing set.

Examples

>>> import pandas as pd
>>> from sklearn.model_selection import train_test_split
>>> from tasrif.processing_pipeline.custom import NormalizeOperator
>>> from tasrif.processing_pipeline.custom import NormalizeTransformOperator
>>> df = pd.DataFrame([
    [1, "2020-05-01 00:00:00", 10],
    [1, "2020-05-01 01:00:00", 15],
    [1, "2020-05-01 03:00:00", 23],
    [2, "2020-05-02 00:00:00", 17],
    [2, "2020-05-02 01:00:00", 11]],
    columns=['logId', 'timestamp', 'sleep_level'])
>>> X_train, X_test, y_train, y_test = train_test_split(df['timestamp'], df['sleep_level'], test_size=0.4)
>>> op1 = NormalizeOperator('all', 'minmax', {'feature_range': (0, 2)})
>>> output1 = op1.process(y_train.to_frame())
>>> print(output1)
[(array([[2. ],

[1.33333333], [0. ]]), MinMaxScaler(feature_range=(0, 2)))]

>>> processed_train_y = output1[0][0]
>>> trained_model = output1[0][1]
>>> op2 = NormalizeTranformOperator('all', trained_model)
>>> output2 = op2.process(y_test.to_frame())
>>> print(output2)
[array([[ 4. ],

[-0.33333333]])]

__init__(feature_names='all', model=None)

Creates a new instance of NormalizeTransformOperator

Parameters
  • feature_names (list, str) – feature_names in the given dataframe to normalize

  • model (StandardScaler / MinMaxScaler / MaxAbsScaler / RobustScaler) – Model with normalization method (‘zscore’, ‘minmax’, ‘maxabs’, ‘robust’)

Raises

ValueError – parameter method unknown.