custom

Module to export customized pipeline operators

tasrif.processing_pipeline.custom.add_duration_operator

Operator to aggregate column features based on a column

tasrif.processing_pipeline.custom.aggregate_operator

Operator to aggregate column features based on a column

tasrif.processing_pipeline.custom.categorize_duration_operator

Operator to extract features from a duration column

tasrif.processing_pipeline.custom.categorize_time_operator

Operator to aggregate column features based on a column

tasrif.processing_pipeline.custom.create_feature_operator

Operator to create a new column feature from existing column features

tasrif.processing_pipeline.custom.distributed_upsample_operator

Operator to upsample a timeseries based dataframe in a distributed way

tasrif.processing_pipeline.custom.drop_index_duplicates_operator

Remove duplicate values from one or more dataframes.

tasrif.processing_pipeline.custom.encode_cyclical_features_operator

Operator to aggregate column features based on a column

tasrif.processing_pipeline.custom.filter_operator

Operator to Filter rows or days from patients data

tasrif.processing_pipeline.custom.flatten_operator

Module that defines that FlattenOperator class.

tasrif.processing_pipeline.custom.iterate_json_operator

Operator that returns an iterator of json data.

tasrif.processing_pipeline.custom.jq_operator

Operator to resample a timeseries based dataframe

tasrif.processing_pipeline.custom.json_pivot_operator

Operator that returns an iterator of json data.

tasrif.processing_pipeline.custom.linear_fit_operator

Operator to fit features to target columns using sklearn’s linear regression

tasrif.processing_pipeline.custom.normalize_operator

Operator to normalize the integer/float values in a dataframe

tasrif.processing_pipeline.custom.normalize_transform_operator

Operator to normalize the integer/float values in a dataframe

tasrif.processing_pipeline.custom.one_hot_encoder

Operator to encode (transform) categorical features as a one-hot numeric array.

tasrif.processing_pipeline.custom.participation_overview_operator

Operator to aggregate column features based on a column

tasrif.processing_pipeline.custom.read_csv_folder_operator

Operator to read multiple csvs in a folder

tasrif.processing_pipeline.custom.read_nested_csv_operator

Operator to aggregate column features based on a column

tasrif.processing_pipeline.custom.resample_operator

Operator to resample a timeseries based dataframe

tasrif.processing_pipeline.custom.set_features_value_operator

Operator to select column feature_names with the option to set values for the selected data frame

tasrif.processing_pipeline.custom.set_start_hour_of_day_operator

Operator to visualize participant ID activity per day

tasrif.processing_pipeline.custom.sliding_window_operator

Operator to slide a fixed length window across a timeseries dataframe

tasrif.processing_pipeline.custom.statistics_operator

Operator to aggregate column features based on a column