linear_fit_operator¶
Operator to fit features to target columns using sklearn’s linear regression
-
class
tasrif.processing_pipeline.custom.linear_fit_operator.
LinearFitOperator
(feature_names, target, target_type='continuous', **model_kwargs)¶ Operator to fit features to target column using linear regression
Examples
>>> import pandas as pd >>> from tasrif.processing_pipeline.custom import LinearFitOperator >>> df = pd.DataFrame([ ... [1, "2020-05-01 00:00:00", 10, 'poor'], ... [1, "2020-05-01 01:00:00", 15, 'poor'], ... [1, "2020-05-01 03:00:00", 23, 'good'], ... [2, "2020-05-02 00:00:00", 17, 'good'], ... [2, "2020-05-02 01:00:00", 11, 'poor']], ... columns=['logId', 'timestamp', 'sleep_level', 'sleep_quality']) >>> >>> op = LinearFitOperator(feature_names='sleep_level', ... target='sleep_quality', ... target_type='categorical') >>> print(op.process(df)) [(array(['poor', 'poor', 'good', 'good', 'poor'], dtype=object), 1.0, array([12.71063824]))]
>>> df = pd.DataFrame([ ... [15, 10, 'poor'], ... [13, 15, 'poor'], ... [11, 23, 'good'], ... [25, 17, 'good'], ... [20, 11, 'poor']], ... columns=['feature1', 'feature2', 'target']) >>> >>> op = LinearFitOperator(feature_names='all', ... target='target', ... target_type='categorical') >>> op.process(df) [(array(['poor', 'poor', 'good', 'good', 'poor'], dtype=object), 1.0, array([17.78134321]))]
-
__init__
(feature_names, target, target_type='continuous', **model_kwargs)¶ Creates a new instance of LinearFitOperator
- Parameters
feature_names (list, str) – feature_names in the given dataframe to fit. if ‘all’, then select all numerical features except target
target (str) – dependant target feature in the dataframe
target_type (str) –
If target_type is
continuous
, LinearRegression will be usedIf target_type is
categorical
, LogisticRegression will be usedelse, LogisticRegression will be used
**model_kwargs – key word arguments passed to sklearn LinearRegression or LogisticRegression
-